

Adani Portfolio: A World class infrastructure & utility portfolio

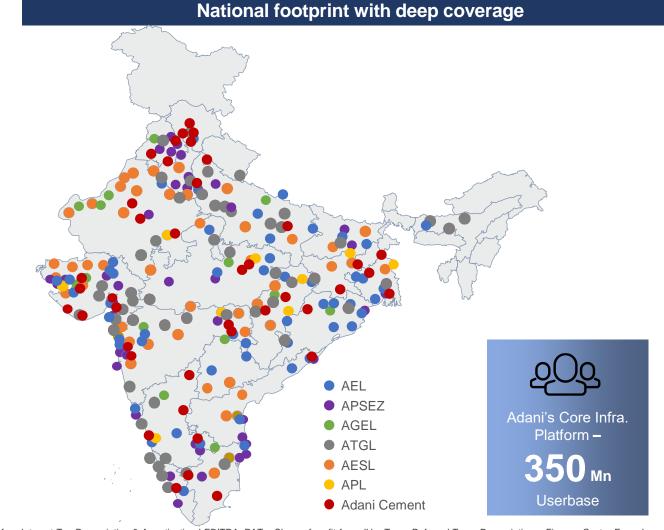
adani

(%): Adani Family equity stake in Adani Portfolio companies (%): AEL equity stake in its subsidiaries Listed cos

A multi-decade story of high growth centered around infrastructure & utility core

1. NQXT: North Queensland Export Terminal | 2. ATGL: Adani Total Gas Ltd, JV with Total Energies | 3. Data center, JV with EdgeConnex, | 4. Cement includes 67.53% (67.57% on Voting Rights basis) stake in Ambuja Cements as on 31st December, 2024 which in turn owns 50.05% in ACC Limited. Adani directly owns 6.64% stake in ACC Limited. Ambuja Cements Ltd. holds 58.08% stake in Sanghi Industries Ltd.| 5. Includes the manufacturing of Defense and Aerospace Equipment | 6. AEL to exit Adani Wilmar JV, diluted 13.50% through Offer For Sale (13th and 124), residual stake dilution is pursuant to agreement between Adani & Wilmar Group. | AEL: Adani Energy Solutions Limited; APEZ: Adani Ports and Special Economic Zone Limited; AGEL: Adani Energy Solutions Limited; T&D: Transmission & Distribution; APL: Adani Power Limited; AWL: Adani Wilmar Limited; ADL: Adani Digital Labs Pvt. Limited; IPP: Independent Power Producer | NDTV: New Delhi Television Ltd | PVC: Polyvinyl Chloride | Promoter's holdings are as on 31st December, 2024.

Adani Portfolio: Decades long track record of industry best growth with national footprint


Secular growth with world leading efficiency

adani Renewables	
Growth	4x 6
EBITDA	92 % 1,3,4

Note: 1. Data for FY24; 2. Margin for Indian ports business only I Excludes forex gains/losses; 3. EBITDA: Earning before Interest Tax Depreciation & Amortization I EBITDA: PAT + Share of profit from JV + Tax + Deferred Tax + Depreciation + Finance Cost + Forex Loss / (Gain) + Exceptional Items 4. EBITDA Margin represents EBITDA earned from power supply 5. Operating EBITDA margin of transmission business only, does not include distribution business I 6. Growth pertains to expansion and development aligned with market growth. Growth of respective Adami portfolio company vs. Industry growth is as follows: APSEZ's cargo volume surged from 113 MMT to 408 MMT (14%) between 2014 and 2024, outpacing the industry's growth from 972 MMT to 1539 MMT (5%). AGEL's operational capacity expanded from 0.3 GW to 10.9 GW (57%) between 2016 and 2024, surpassing the industry's growth from 46 GW to 143.6 GW (15%). AESL's transmission length increased from 6,950 ckm to 20,509 ckm (14%) between 2016 and 2024, surpassing the industry's growth from 3,41,551 ckm to 4,85,544 ckm (4%). ATGL expanded its geographical areas from 6 to 52 (27%) between 2015 and 2024, outperforming the industry's growth from 62 to 307 (19%). PBT: Profit before tax I ATGL: Adani Total Gas Limited I AEL: Adani Energy Solutions Limited I APL: Adani Green Energy Limited I Growth represents the comparison with respective industry segment. Industry segment. Industry segment. Industry segment. Industry segment. Industry source: APSEZ (domestic cargo volume): https://shipmin.gov.in/division/transport-research I Renewable (operational capacity): I Renewable (operational capacity): Installed Capacity Report - Central Electricity Authority (cea.nic.in) I AESL (ckms): National Power Portal (npp.gov.in) I ATGL (GAs): Broc

Adani Portfolio: Repeatable, robust & proven transformative model of investment

DEVELOPMENT

Adani Infra (India) Limited (AIIL)

Origination

- Analysis & market intelligence
- · Viability analysis

Site Development

- Site acquisition
- · Concessions & regulatory agreements

Longest Private HVDC

Line in Asia

Development

Construction

- Engineering & design
- Sourcing & quality

Renewable Cluster

Growth Capital - Platform

Infrastructure Financing

(at Khavda)

Framework

OPERATIONS

Operations (AIMSL)

Operation

- Life cycle O&M planning
- · Asset Management plan

New C.E.O.

Consumer | Employees | Other Stakeholders

CONSUMERS

Inspired Purpose & Value Creation

- · Delivering exceptional products & services for elevated engagement
- · Differentiated and many P&Ls

India's Largest Commercial Port (at Mundra)

ERFORMANC

Ž

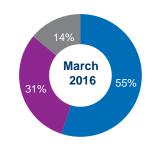
(Mundra - Mohindergarh) Strategic value **Investment Case**

Policy, Strategy & Risk

Mapping

Framework

Duration Risk Matching Risk Management - Rate & Currency **Governance & Assurance Diversified Source of Capital**



Energy Network Operation Center (ENOC)

Adani's Core Infra. Platform -

Userbase

Long Term Debt

- PSU Banks
- Pvt. Banks
- Bonds
- NBFCs & FIs
- DII
- Global Int. Banks

Capex LC

Continued Focus & Investment

Human Capital Development

- Leadership Development Initiatives
- Investment in Human Capital

Al enabled Digital Transformation

- Power Utility Business ENOC
- · City Gas Distribution SOUL
- Transportation Business AOCC

Large Integrated Platform

Platform uniquely positioned to offer scale and high efficiencies

Integrated platform -> Lowest cost of energy -> Lowest cost for all products in value chain

Technology Development

In House R&D with Tech Experts

CRT and Hydep for Electrolysers

Strategic Location

Mundra: Integrated Green H2 Hub

Land availability, supporting infrastructure, large existing industry cluster

Energy Infrastructure Expertise

Adani expertise in building and

Adopting Global Standards

Adopting Global Green Hydrogen standard making it ready to export **Globally accepted Highest** manufacturing quality standards

Technology Enabled Operations

Analytics driven O&M with technology to maximize production and perform predictive maintenance

Operations

Development

operating energy infrastructure assets across entire value chain

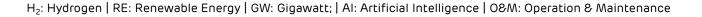
Synergies

~80% of cost is internalized

Large scale, existing availability of renewables, power transmission and ports and logistics within Adani contributing in ANIL's major cost cutting

Efficient Capital Management

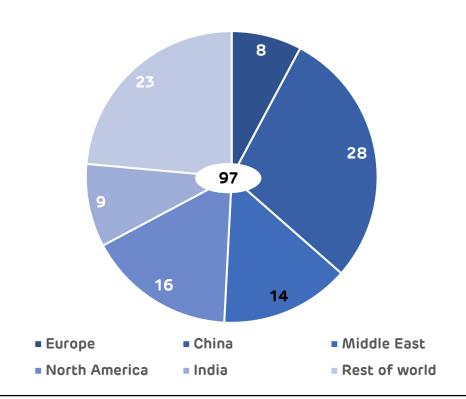
Capital management plan in line with underlying business philosophy Diversification of funding sources

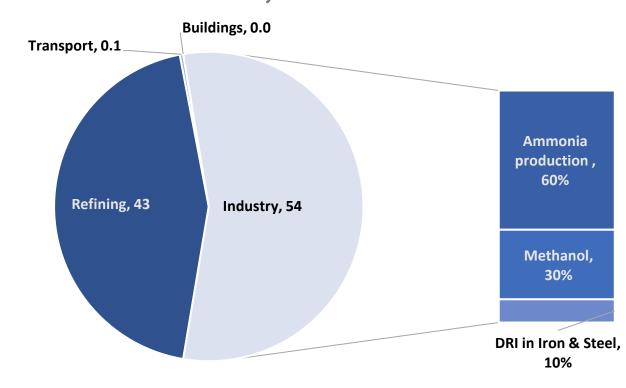

Regulatory Framework

National Green Hydrogen Mission launched

Several production linked and capex linked incentives for Green H₂ ecosystem

Value Creation



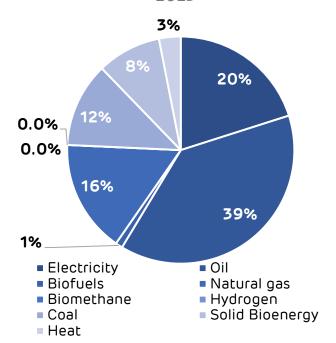

Global Hydrogen Demand

Global demand for Hydrogen 2023 (MMTPA) by Region

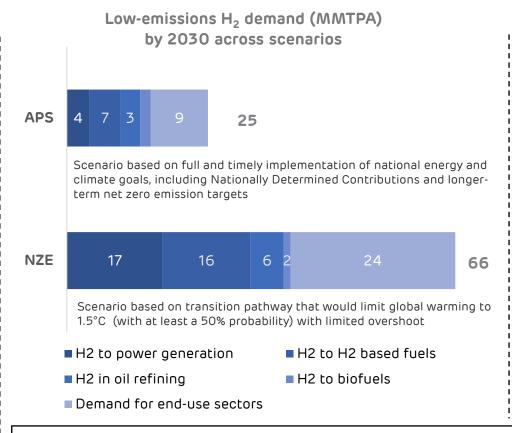
Global demand for Hydrogen 2023 (MMTPA) by Sectors

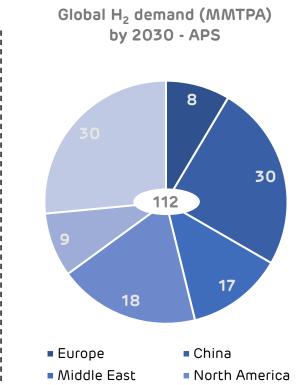
- ☐ Global hydrogen use reached 97 MMTPA in 2023
- \Box Low emissions hydrogen¹ production accounts for ~1 MMTPA out of which hydrogen from water electrolysis Is ~ 0.185 MMTPA

Current low penetration of Green Hydrogen signals significant potential for replacement demand & new uses


Source: World Energy Outlook 2024 (IEA); Global Hydrogen Review 2024 (IEA)

^{1.} Low-emissions hydrogen is produced from electrolysis using electricity generated by RE or Nuclear, from Fossil Fuels with CCUS or derived from Bioenergy; CCUS: Carbon Capture Utilization & Storage; MMTPA: Million Metric Tonnes per Annum; DRI: Direct Reduced Iron

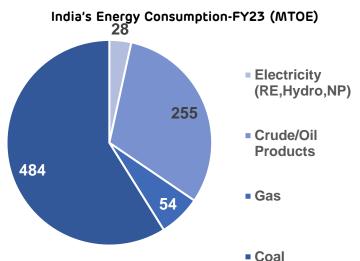

Global Hydrogen Demand - Future Potential



World energy consumption by Sources - 2023

- □ Electrification to contribute towards reducing fossil fuel demand, leading to increased share in future from current 20%.
- ☐ Green Hydrogen to also work as source of electricity in RE resources deficient areas.

Rest of world


India

- \square As per APS 2030, Low-emissions H₂ from electrolysis using RE or Nuclear will be 18 MMTPA and to be 7 MMTPA from Fossil Fuels with CCUS or Bioenergy.
- \Box China, Europe, Middle East and North America to lead the growth in H₂ demand and will account for ~ 65% of 2030 total demand

India consumes 6.55 MMTPA hydrogen (grey)

Green H_2 – Moving from Greening the Grid to Greening Industry and Mobility

44% of Gas and ~89% of Oil imported for a net import bill of USD 144 Bn in FY23

Green H₂ and Derivatives can substitute use of fossil fuels in industry thus reducing import requirements

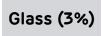
Green H₂ and Derivatives are also an option for hard to abate sectors such as fertilizers,

steel and refineries

6.55 48% 33% 8% 4% 3% 2% 3%

- Imported natural gas to produce H₂ through SMR process
- H₂ is used to process crude oil to obtain refined fuels e.g. gasoline, diesel. Sulphur impurities are removed via Hydro-desulfurization

Fertilizer (33%)


- H₂ is used to produce ammonia and ~90% of ammonia is used to manufacture fertilizers
- Natural gas (80% imported) is the main feedstock for the fertilizer production

Methanol (8%)

• Hydrogen is used in production of methanol which is further used in production of acetic acid and formaldehyde

Hydrogen Peroxide (4%)

• Hydrogen is used in the first step, i.e. hydrogenation of working solution of four-step hydrogen peroxide manufacturing process

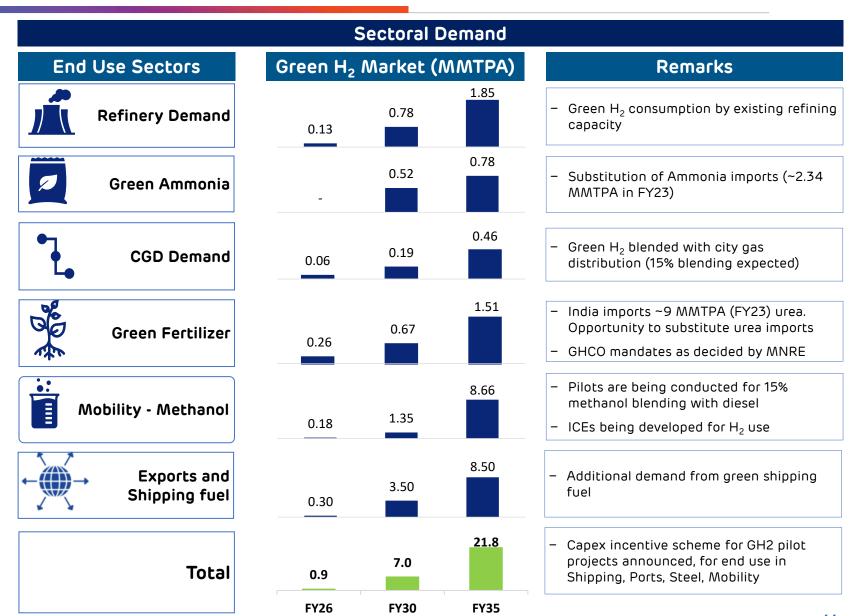
 Hydrogen is used as a getter gas to prevent oxidation over tin baths used in float glass manufacturing process, glass formed on the baths is made without defects

• To produce virgin metallics (DRI or HBI) from lump iron ore (or pellets) requires ~650 Nm³ of hydrogen (or 58 kg) per ton of DRI

India's green hydrogen (GH₂) target & demand by 2030

National Green Hydrogen Mission

At least
5 MMT GH₂
Annual production


125 GW RE
capacity for GH2
generation &
associated
transmission network

60-100 GW Electrolyser capacity

INR 8 Lakh Cr

Green hydrogen: India story

Decarbonization: "Panchamrit" strategy (COP26)

Supportive policy environment

1 500 GW non-fossil energy capacity by 2030

- National Green Hydrogen Mission Phase-1 launched on 17th Feb 2022
- 50% of India's energy requirements from RE by 2030
- Phase 1 included supply side incentives such as ISTS charges waiver, banking, etc.

- Reduction in total projected carbon emissions by 1 Bn Tonnes between 2022 & 2030
- Green Hydrogen Consumption Obligations (GHCO) for enduse sectors, PLI for green hydrogen & derivatives production

- Reduction in carbon intensity of the economy by 45% by 2030, over 2005 levels
- Support for value chain through PLI e.g., for Solar, Electrolyser manufacturing

5 Target of net zero emissions by 2070

5 Other measures such as ALMM, BCD

PLI: Production Linked Incentive | ISTS: Inter State transmission system | ALMM: Approved list of Models and Manufacturers | BCD: Basic Customs Duty

ANIL: One of the world's largest* fully integrated GH2 platform

What it takes to win

1 Competitive cost Green Electron

- Input power cost accounts for ~60% of cost of Green Hydrogen
- Economies of scale and large resources to facilitate lowest cost electron

- Execution Risk mitigation by full integration of supply chain
- Tighter control on capex and resources

How we are delivering it

Large scale with high quality resources

- Investment of **USD 50 bn** in GH₂ ecosystem
- Secured resource rich contiguous land for RE and hydrogen production

Mine to module manufacturing ecosystem

All key components of GH₂ projects within
 ANIL – Solar, Wind, Electrolyzers

3 Integrated Green H₂ ecosystem

 Integrated development across the value chain – pipelines/transport options, storage facilities, port facilities and terminals

Leveraging broader Adani ecosystem – RE, Transmission, Ports, Logistics, Gas

- GH₂ and derivatives hub at Mundra, Gujarat
- Integration into Global supply chain for hydrogen and its derivatives

Deliver the lowest cost green molecule to transform India's energy landscape

Adani New Industries Limited

Supply Chain: Manufacturing

- Manufacture key components for RE & GH2 projects
- End to End development of supply chain

Solar - Mg Silica and Polysilicon

Solar – Ingot, wafer, cell, modules

WTG

Electrolysers

Battery & Fuel cells

End-end supply chain control

Green Electron Generation

- Integrated renewable (solar and wind) power plants
- Green feedstock for hydrogen electrolysers

Captive solar, wind and hybrid renewable power plants

Resource rich site for 42+ GW for Renewable Energy

Co-located to green hydrogen electrolyser

Green Hydrogen Production

- Integrated GH2 projects
- Anchor site in Gujarat near Mundra :

Large scale resource rich site for ~2.1 MMTPA GH2 production

GH2 transport through dedicated pipeline to nearest port

Downstream

- Integrating GH2 with downstream products
- Leverage Mundra's experience of handling liquid cargo
- Integrate into global GH2 supply chain

Located near largest port in India providing strategic advantage

Flexibility to develop multiple downstream products near port

Integrated Renewable Power Project

High quality resources deployed at scale

Well synergized with Adani ecosystem

Overall manufacturing footprint

Manufacturing Businesses

Target Capacities in 1st Phase

Key Highlights

Polysilicon: 30 KTPA
Ingot/Wafer: 10 GW
Cells: 10 GW
Modules: 10 GW

- Existing 4 GW of cell and module manufacturing facility;
- More than 7+ years of experience in cell and module manufacturing
- Full backward integration starting from silicon till modules

WTG: 5 GW

- 5.2 MW WTG in commercial production, certified for global deployment
- Manufacturing of Turbine, Nacelle & Rotor Blades
- Technology partnership with well known global player (W2E & Windnovation)

Electrolyzer: 5 GW

- Backward integration for supply assurance and cost efficiency
- 300 MW manufacturing capacity awarded under PLI Tranche 1
- Focus on reduction in stack & BOP cost through indigenization and scale
- Manufacturing will cover multiple technologies such as Alkaline, AEM and others

Electrolyzer development status

Technology development

Multiple tie-ups with Electrolyzer technology providers namely Cavendish Renewable Technology (Australia) and Hydep (Italy)

Alkaline

5 MW size Electrolyzer Pilot in progress

AEM

Prototype stage in progress

C-Cell

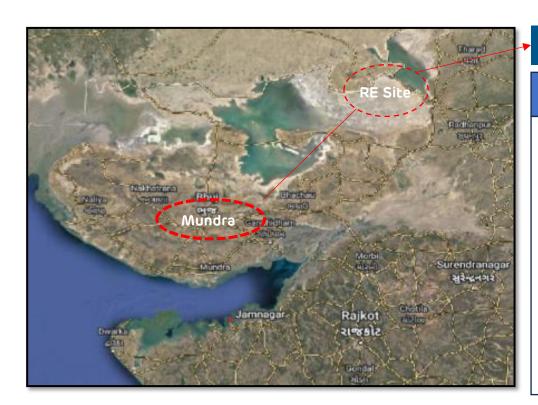
Prototype stage in progress

Preferred Technology

Alkaline

- Proven technology for 100 years.
- Lower initial CAPEX

Anion Exchange Membrane (AEM)


- High operational flexibility
- Lower CAPEX compared to PEM
- Better efficiency than Alkaline

Product development

- Established Electrolyzer Testing Lab to drive performance improvement
- Won 300 MW Capacity under PLI scheme
- Establishing Electrolyzer Manufacturing Facility
- Supply chain development for achieving 90% indigenization of Electrolyzer

Green Hydrogen Project: Great Rann of Kutch (GRK), Gujarat

~85,000 hectares land allotted

Studies Completed

- Site Survey- Land profile and Topography
- Soil and Seismic condition
- Feasibility study
- Pipeline & Storage
- Power evacuation system
- Basic Engineering
- Rainfall and Drainage pattern
- Off grid integration

On-going Studies

- Corrosion Study
- RE resource assessment
- Process study

ANIL to leverage Group expertise

- Expertise in Giga-Scale RE Project development Largest RE developer in India
- Expertise in setting up long distance transmission lines Largest transmission system developer in India
- Expertise in developing and handling large ports and associated infrastructure Largest port operator in India

ANIL: Green Hydrogen Ecosystem for First phase of 1.0 MMTPA GH2 by 2030

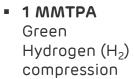
Key components:

Hybrid RE Generation Green H₂
production

H₂ Pipeline

Green Ammonia

Offtake of Derivatives¹

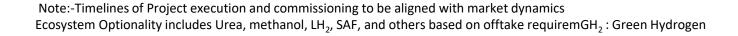


■ ~21 GW+ Renewable Energy

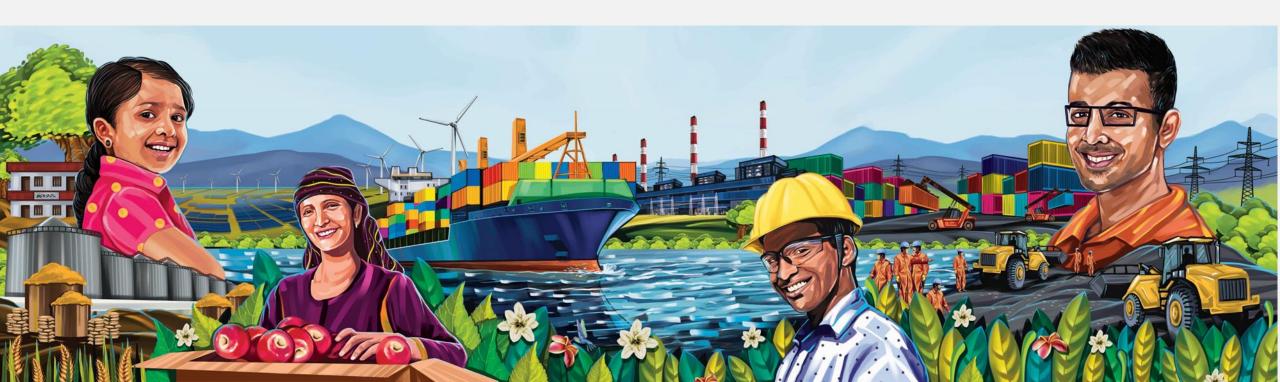
~215 Km pipeline

~5.6 MMTPAGreen

Ammonia capacity or equivalent derivatives


 Air separation Unit (ASU) for Nitrogen generation

- Development of derivative transport infrastructure at Mundra port
- Export to Europe, Singapore, Japan and Korea
- Domestic demand



Grid connected

Thank You

